The Kalman Filter in Simple Terms

The Kalman filter is a powerful algorithm widely used in quantitative finance to estimate a linear dynamic system's state from noisy measurements. It plays a crucial role in applications such as asset tracking, portfolio management, and trend prediction.

The Kalman filter starts with an initial estimate of the system's true state and an associated uncertainty.

- Initial State Estimate (State): Our initial guess of the true value, e.g., a stock price.

- Initial Error Covariance Estimate (Error Covariance): Represents the initial estimate's uncertainty.

Two key matrices are involved in initialization:

- State Transition Matrix (A): Describes how the financial parameter changes over time.

- Observation Matrix (H): Maps the true state to observed measurements.

- Initial State Estimate (State): $100
- Initial Error Covariance Estimate (Error Covariance): $1 (Standard Deviation)
- Initial Estimate of Measurement Noise (Measurement Noise Covariance): $2 (Standard Deviation)
- Observed Price Data (with noise):

- Day 1: $102
- Day 2: $98
- Day 3: $105
- Day 4: $97

Time Step 1 (Day 1):

Prediction:

- Predicted State Estimate (Prior): $100 (no change)
- Predicted Error Covariance (Prior Covariance): $2 (process noise + measurement noise)

Update:

- Kalman Gain: 0.5 (Error Covariance / (Error Covariance + Measurement Noise Covariance))
- Corrected State Estimate (Posterior): $101 (Prior + Kalman Gain * (Observed Price - Prior))
- Corrected Error Covariance (Posterior Covariance): $1 (1 - Kalman Gain) * Prior Error Covariance

Time Step 2 (Day 2):

Prediction:

- Predicted State Estimate (Prior): $101 (previous Posterior)
- Predicted Error Covariance (Prior Covariance): $2 (process noise + measurement noise)

Update:

- Kalman Gain: 0.5 (Error Covariance / (Error Covariance + Measurement Noise Covariance))
- Corrected State Estimate (Posterior): $99.5 (Prior + Kalman Gain * (Observed Price - Prior))
- Corrected Error Covariance (Posterior Covariance): $1 (1 - Kalman Gain) * Prior Covariance

This process continues for each time step, optimally estimating the true state while considering uncertainty.

NOTA: 

- Predicted Error Covariance: Estimated prediction uncertainty before new measurements.

- Corrected Error Covariance (Posterior): Updated prediction uncertainty after incorporating measurements.

- Corrected State Estimate (Posterior): Best estimate of the true state after considering prediction and measurements.

- Kalman Gain: Balances trust between measurements and predictions.

The Kalman Filter in Layman’s terms…
The Kalman Filter in Layman’s terms…

Write a comment

Comments: 0

About the Author

 

 Florian Campuzan is a graduate of Sciences Po Paris (Economic and Financial section) with a degree in Economics (Money and Finance). A CFA charterholder, he began his career in private equity and venture capital as an investment manager at Natixis before transitioning to market finance as a proprietary trader.

 

In the early 2010s, Florian founded Finance Tutoring, a specialized firm offering training and consulting in market and corporate finance. With over 12 years of experience, he has led finance training programs, advised financial institutions and industrial groups on risk management, and prepared candidates for the CFA exams.

 

Passionate about quantitative finance and the application of mathematics, Florian is dedicated to making complex concepts intuitive and accessible. He believes that mastering any topic begins with understanding its core intuition, enabling professionals and students alike to build a strong foundation for success.