
To derive \( \Delta \) for a non-dividend-paying European call option, we look at the Black-Scholes formula for a call option's price:
\[ C = S \cdot N(d_1) - K \cdot e^{-rT} \cdot N(d_2) \]
In this formula:
- \( C \): Call option price
- \( S \): Current stock price
- \( K \): Option's strike price
- \( T \): Time until the option expires
- \( r \): Risk-free interest rate
- \( N() \): Cumulative distribution function for the standard normal distribution
The values \( d_1 \) and \( d_2 \) are calculated by:
\[ d_1 = \frac{\ln(S/K) + \left(r + \sigma^2 / 2\right) \cdot T}{\sigma \cdot \sqrt{T}}, \quad d_2 = d_1 - \sigma \cdot \sqrt{T} \]
\( \Delta \), the delta for a call option, measures how much the price of the option changes if the stock price changes by one unit. To find \( \Delta \), we take the derivative of \( C \) with respect to \( S \):
\[ \Delta = \frac{dC}{dS} \]
Differentiating the Black-Scholes Formula
Differentiate the Black-Scholes formula with respect to \( S \):
\[ \Delta = \frac{d(S \cdot N(d_1))}{dS} - \frac{d(K \cdot e^{-rT} \cdot N(d_2))}{dS} \]
The derivative of \( S \cdot N(d_1) \) is:
\[ \frac{d}{dS} \left[S \cdot N(d_1)\right] = N(d_1) + S \cdot N'(d_1) \cdot \frac{d(d_1)}{dS} \]
For \( K \cdot e^{-rT} \cdot N(d_2) \), the derivative with respect to \( S \) is:
\[ \frac{d}{dS} \left[K \cdot e^{-rT} \cdot N(d_2)\right] = K \cdot e^{-rT} \cdot N'(d_2) \cdot \frac{d(d_2)}{dS} \]
Since \( d_2 = d_1 - \sigma \cdot \sqrt{T} \), we have \( \frac{d(d_1)}{dS} = \frac{d(d_2)}{dS} \), and \( N'(d_1) = N'(d_2) \). Substituting these into the equation:
\[ \Delta = N(d_1) + S \cdot N'(d_1) \cdot \frac{d(d_1)}{dS} - K \cdot e^{-rT} \cdot N'(d_2) \cdot \frac{d(d_2)}{dS} \]
Simplify further:
\[ \Delta = N(d_1) + S \cdot N'(d_1) \cdot \frac{d(d_1)}{dS} - S \cdot e^{-rT} \cdot N'(d_2) \cdot \frac{d(d_2)}{dS} \]
The \( S \cdot N'(d_1) \cdot \frac{d(d_1)}{dS} \) and \( S \cdot e^{-rT} \cdot N'(d_2) \cdot \frac{d(d_2)}{dS} \) terms cancel, leaving:
\[ \Delta = N(d_1) \]
\( N'(d_1) \) is the probability density function for the standard normal distribution, which is the derivative of \( N(d_1) \). When multiplied by \( \frac{d(d_1)}{dS} \), the \( S \) terms cancel out, simplifying to \( N(d_1) \). This reflects the risk-neutral probability of the option ending in the money, adjusted for the sensitivity of the option's price to the stock price.
🎓 Recommended Training: The Fundamentals of Quantitative Finance
Discover the essential concepts of quantitative finance, explore applied mathematical models, and learn how to use them for risk management and asset valuation.
Explore the Training
Écrire commentaire