Advanced algorithms enable computers to identify patterns, make decisions, and even predict the future based on data. Among these powerful tools, the Support Vector Machine (SVM) is notable for its effectiveness, especially in the field of classification.
But how does it work?
Let's demystify this algorithm, starting with one of its fundamental concepts: the hyperplane.
Imagine you're at a park and you observe a wide, open field with various types of flowers scattered all around.
L’algorithme de la machine à vecteurs de support (SVM) sépare efficacement les données en trouvant l’hyperplan optimal qui maximise la marge entre les catégories. Cette approche robuste améliore la classification et la prédiction de nouvelles données.